Controlo Ótimo e Adaptativo

Mestrado em Engenharia Eletrotécnica - Especialização em Controlo e Eletrónica Industrial
6 ECTS; 1º Ano, 2º Semestre, 28,0 T + 28,0 PL + 5,0 OT + 2,0 O

Lecturer
- Paulo Manuel Machado Coelho
- Ana Cristina Barata Pires Lopes
- Hugo Filipe Mendes Magalhães

Prerequisites
Not applicable.

Objectives
General knowledge of control, including most common techniques and methods in MIMO control (multivariable) and state-space approaches; analysis and design skills through practical applications of the different techniques such as state estimate using Kalman Filter; design optimal and adaptive systems

Program
1– Introduction and Reviews: Controllability and observability; design of state feedback and output feedback control: Ackermann's formula.
2– Regulator Design and Reference Following: Controller with state observer; Predictor estimator; Current estimator. Reference inputs for full-state feedback systems; reference input with estimators; reference input with output error command; comparison of the estimator structure and classical methods.
3– Disturbances and Control by State Augmentation: Disturbances estimation; Control by state augmentation, including the process model; Control by state augmentation, including the disturbances model; Integral control action.
4– Adaptive Control: Least Squares Method; parameter estimate.
5– MIMO Systems and Optimal Control: Time-varying optimal control; Linear quadratic regulator (LQR) steady-state optimal control; Optimal estimation based on Kalman Filter; Multivariable Control Design.
6– Brief introduction to system identification techniques.

Evaluation Methodology
Exam (50%) practical coursework (50%).

Bibliography
- Ogata, K. (1994). Discrete-time Control Systems. USA: Prentice-Hall
- Workman, M. e Powell, D. e Franklin, G. (1998). Digital Control of Dynamic Systems. USA: Addison-Wesley
- Wittenmark, H. e Astrom, K. (1997). Computer-controlled systems: theory and design. USA: Prentice-Hall

Method of interaction
Lectures supported by illustrative cases. Theoretical-practical lessons
focused on concept application and problem-solving. Practical works proposed to the students.

Software used in class
Matlab / Simulink