Probabilidades e Estatística

Auditoria e Fiscalidade
4 ECTS; 1º Ano, 2º Semestre, 45,0 TP

Docente(s)
- José Manuel Borges Henriques Faria Paixão
- Maria João da Costa Antunes Inácio

Pré-requisitos
Não existem pré-requisitos, contudo recomendam-se conhecimentos de teoria dos conjuntos, análise combinatória, cálculo diferencial e cálculo integral.

Objetivos
1. Conhecer e utilizar os principais conceitos de:
1.1. Estatística descritiva
1.2. Probabilidades e distribuições teóricas de probabilidade
1.3. Estimação e testes de hipóteses
1.4. Regressão linear
2. Proceder à análise de dados, interpretar os resultados e proceder à tomada de uma decisão

Programa
1. ESTATÍSTICA DESCRITIVA
1.1. Conceitos básicos.
1.1.1. População e amostra.
1.1.2. Fases do método estatístico.
1.2. Tipo de dados.
1.3. Distribuição de frequências e representação gráfica de dados.
1.4. Medidas de estatística descritiva.
1.4.1. Medidas de localização: tendência central e de ordem (Quantis). Identificação e classificação de ?outliers?. Diagrama de extremos e quartis.
1.4.2. Medidas de dispersão.
1.4.3. Medidas de assimetria.
1.4.4. Medidas de achatamento ou curtose.

2. INTRODUÇÃO À TEORIA DAS PROBABILIDADES
2.1. Algumas notas sobre análise combinatória.
2.2. Conceitos básicos.
2.2.1. Experiência aleatória.
2.2.2. Espaço de resultados.
2.2.3. Acontecimentos.
2.3. Álgebra dos acontecimentos.
2.3.1. Acontecimento complementar.
2.3.2. União de acontecimentos.
2.3.3. Intersecção de acontecimentos.
2.3.4. Diferença de acontecimentos.
2.3.5. Propriedades das operações entre conjuntos
2.4. Leis de probabilidade.
2.4.1. Definição clássica (ou de Laplace) de probabilidade.
2.4.2. Definição frequêncista ou empírica.
2.4.3. Axiomatização da teoria das probabilidades
2.5. Probabilidade condicionada.
2.6. Acontecimentos independentes.
2.7. Teorema da probabilidade total e Teorema de Bayes.

3. VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES TEÓRICAS DE PROBABILIDADE
3.1. Definição de variável aleatória.
3.2. Variáveis aleatórias discretas. Função de probabilidade. Função de distribuição. Valor esperado, variância e algumas das suas propriedades. Moda e quantis.
3.3. Variáveis aleatórias contínuas. Função de densidade de probabilidade. Função de distribuição. Valor esperado, variância e algumas das suas propriedades. Moda e quantis
3.4. Algumas distribuições discretas de probabilidade.
3.4.1. Distribuição Binomial.
3.4.2. Distribuição de Poisson.
3.4.3. Aproximação da distribuição Binomial à distribuição de Poisson.
3.4.4. Referência a outras distribuições discretas: distribuição geométrica e distribuição hipergeométrica.
3.5. Algumas distribuições contínuas de probabilidade.
3.5.1. Distribuição Normal (ou de Gauss). Definição, propriedades, uso da tabela da distribuição normal N(0,1) e aplicações.
3.5.2. Teorema do Limite Central. Aproximação da distribuição Binomial à distribuição Normal e aproximação da distribuição de Poisson à distribuição Normal.
3.5.3. Referência a outras distribuições contínuas: distribuição Qui-quadrado, distribuição t-Student e distribuição F-Snedcor.

4. ESTIMAÇÃO ESTATÍSTICA E TESTES DE HIPÓTESES
4.1. Estimação estatística
4.1.1. Conceitos básicos sobre estimação: população e parâmetro; amostra e estatística.
4.1.2. Estimação pontual de parâmetros populacionais.
4.1.3. Estimação intervalar de parâmetros populacionais.
4.2. Testes de hipóteses
4.2.1. Conceitos básicos sobre testes de hipóteses: hipótese nula e hipótese alternativa, tipos de testes de hipóteses (unilaterais e bilaterais), tipologia dos erros, estatística de teste e região crítica.
4.2.2. Valor de prova (p-value) de um teste de hipóteses. Realização de testes de hipóteses usando o p-value.
4.2.3. Testes de hipóteses para o valor médio, variância e proporção de uma população.
4.2.4. Testes de hipóteses para a comparação dos valores médios e variâncias de duas populações.

5. REGRESSÃO LINEAR SIMPLES
5.1. Diagrama de dispersão. O modelo de regressão linear simples e a reta dos mínimos quadrados.
5.2. Análise do grau de associação entre variáveis: coeficiente de determinação e coeficiente de correlação linear.
5.3. Inferência no modelo de regressão linear simples.

Metodologia de avaliação
Avaliação contínua ou por exame: prova escrita sem consulta sobre toda a matéria. Aprovação (em qualquer modalidade): pelo menos 10 val. em 20 val.

Bibliografia
- Pedrosa, A. e Gama, S. (2016). Introdução Computacional à Probabilidade e Estatística, com Excel. Lisboa: Porto Editora
- Robalo, A. (1998). Estatística: Exercícios, Vol I (Probabilidades. Variáveis aleatórias). Lisboa: Edições Sílabo
- Robalo, A. (2004). Estatística: Exercícios, Vol II (Distribuições. Inferência Estatística). Lisboa: Edições Silabo
- Siegel, A. (1988). Statistics and Data Analysis: An Introduction. New York: John Wiley & Sons

Método de interação
Aulas teórico-práticas, em que se expõem e exemplificam as matérias respeitantes a cada um dos conteúdos programáticos, incentivando-se a participação ativa por parte dos alunos. É dada especial ênfase à análise de dados de natureza económica.

Software utilizado nas aulas
Excel