Probabilidade e Estatística

Gestão e Administração Bancária (Pós-Laboral)
4 ECTS; 1º Ano, 2º Semestre, 45,0 TP

Docente(s)
- Ricardo Jorge Viegas Covas

Pré-requisitos
Não aplicável.

Objetivos
1. Conhecer e utilizar os principais conceitos de:
1.1. Estatística descritiva
1.2. Probabilidades
1.3. Variáveis aleatórias e distribuições de probabilidade
1.4. Estimação e testes de hipóteses
2. Proceder à análise de dados, interpretar os resultados e realizar o processo de tomada de decisão

Programa
1. ESTATÍSTICA DESCRITIVA
1.1. Conceitos básicos.
1.1.1. População e amostra.
1.1.2. Fases do método estatístico.
1.2. Tipo de dados.
1.3. Distribuição de frequências e representação gráfica de dados.
1.4. Medidas de estatística descritiva.
1.4.1. Medidas de localização: tendência central e de ordem (Quantis).Identificação e classificação de ?outliers?. Diagrama de extremos e quartis.
1.4.2. Medidas de dispersão.
1.4.3. Medidas de assimetria.
1.4.4. Medidas de achatamento ou curtose.
2. INTRODUÇÃO À TEORIA DAS PROBABILIDADES
2.1. Algumas notas sobre análise combinatória.
2.2. Conceitos básicos.
2.2.1. Experiência aleatória.
2.2.2. Espaço de resultados.
2.2.3. Acontecimentos.
2.3. Álgebra dos acontecimentos.
2.3.1. Acontecimento complementar.
2.3.2. União de acontecimentos.
2.3.3. Intersecção de acontecimentos.
2.3.4. Diferença de acontecimentos.
2.3.5. Propriedades das operações entre conjuntos
2.4. Leis de probabilidade.
2.4.1. Definição clássica (ou de Laplace) de probabilidade.
2.4.2. Definição frequencista ou empírica.
2.4.3. Axiomatização da teoria das probabilidades
2.5. Probabilidade condicionada.
2.6. Acontecimentos independentes.
2.7. Teorema da probabilidade total e Teorema de Bayes.
3. VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES TEÓRICAS DE PROBABILIDADE
3.1. Definição de variável aleatória.
3.2. Variáveis aleatórias discretas. Função de probabilidade. Função de distribuição. Valor esperado, variância e algumas das suas propriedades. Moda e quantis.
3.3. Variáveis aleatórias contínuas. Função de densidade de probabilidade. Função de distribuição. Valor esperado, variância e algumas das suas propriedades. Moda e quantis
3.4. Algumas distribuições discretas de probabilidade.
3.4.1. Distribuição Binomial.
3.4.2. Distribuição de Poisson.
3.4.3. Aproximação da distribuição Binomial à distribuição de Poisson.
3.4.4. Referência a outras distribuições discretas: distribuição geométrica e distribuição hipergeométrica.
3.5. Algumas distribuições contínuas de probabilidade.
3.5.1. Distribuição Normal (ou de Gauss). Definição, propriedades, uso da tabela da distribuição normal N(0,1) e aplicações.
3.5.2. Teorema do Limite Central. Aproximação da distribuição Binomial à distribuição Normal e aproximação da distribuição de Poisson à distribuição Normal.
3.5.3. Referência a outras distribuições contínuas: distribuição Qui-quadrado, distribuição t-Student e distribuição F-Snedcor.
4. ESTIMAÇÃO ESTATÍSTICA
4.1. Conceitos básicos: população e parâmetro; amostra e estatística.
4.2. Estimação pontual de parâmetros populacionais.
4.3. Estimação intervalar de parâmetros populacionais.
5. TESTES DE HIPÓTESES PARAMÉTRICOS
5.1. Conceitos básicos: hipótese nula e hipótese alternativa, tipos de testes de hipóteses (unilaterais e bilaterais), tipologia dos erros, estatística de teste e região crítica.
5.2. Valor de prova (p-value) de um teste de hipóteses. Realização de testes de hipóteses usando o p-value.
5.3. Testes de hipóteses paramétricos mais comuns.
6. MODELO DE REGRESSÃO LINEAR SIMPLES
6.1. Diagrama de dispersão. Método dos mínimos quadrados.
6.2. Coeficiente de correlação linear de Pearson e coeficiente de determinação.

Metodologia de avaliação
Avaliação contínua ou por exame (de 0 a 20): prova escrita sem consulta sobre toda a matéria. Aprovação: nota superior ou igual a 10 valores.

Bibliografia
- Sarsfield Cabral, J. e Guimarães, R. (2010). Estatística. Lisboa: Verlag Dashöfer Portugal
- Ribeiro, C. e Murteira, B. (2010). Introdução à Estatística. Lisboa: Escolar Editora
- Black, G. e Murteira, B. (1983). Estatística Descritiva. Lisboa: McGraw-Hill
- Robalo, A. (1998). Estatística - Exercícios. (Vol. I e II). Lisboa: Edições Sílabo

Método de interação
Aulas teórico-práticas em que se expõem e exemplificam as matérias respeitantes a cada um dos conteúdos programáticos, incentivando-se a participação ativa por parte dos alunos. É dada especial ênfase à análise de dados de natureza económica.

Software utilizado nas aulas
Excel