IPT Logotipo do IPT

Mestrado em Engenharia Eletrotécnica

Optimal and Adaptive Control

<< back to Curriculum Plan

Publication in the Diário da República: Despacho n.º 8500/2020 - 03/09/2020

6 ECTS; 1º Ano, 2º Semestre, 28,0 T + 28,0 PL + 5,0 OT + 2,0 O

- Paulo Manuel Machado Coelho

Not applicable.

General knowledge of control, including most common techniques and methods in MIMO control (multivariable) and state-space approaches; analysis and design skills through practical applications of the different techniques such as state estimate using Kalman Filter; design optimal and adaptive systems

1 - Introduction and Reviews: Controllability and observability; design of state feedback and output feedback control: Ackermann's formula.
2 - Regulator Design and Reference Following: Controller with state observer; Predictor estimator; Current estimator. Reference inputs for full-state feedback systems; reference input with estimators; reference input with output error command; comparison of the estimator structure and classical methods.
3 - Disturbances and Control by State Augmentation: Disturbances estimation; Control by state augmentation, including the process model; Control by state augmentation, including the disturbances model; Integral control action.
4 - Adaptive Control: Least Squares Method; parameter estimate.
5 - MIMO Systems and Optimal Control: Time-varying optimal control; Linear quadratic regulator (LQR) steady-state optimal control; Optimal estimation based on Kalman Filter; Multivariable Control Design.
6 - Brief introduction to system identification techniques.

Evaluation Methodology
Exam (50%) and practical assignments (50%). The student must obtain a minimum grade of 8 marks (on a scale of 0 to 20) in the exam and a minimum grade of 9.5 marks (on a scale of 0 to 20) in the practical assignments. The average of the two components must be greater than or equal to 9.5 marks (on a scale of 0 to 20).

- Ogata, K. (1994). Discrete-time Control Systems. USA: Prentice-Hall
- Workman, M. e Powell, D. e Franklin, G. (1998). Digital Control of Dynamic Systems. USA: Addison-Wesley
- Wittenmark, H. e Astrom, K. (1997). Computer-controlled systems: theory and design. USA: Prentice-Hall

Teaching Method
Lectures supported by illustrative cases. Theoretical-practical lessons focused on concept application and problem-solving. Practical works proposed to the students.

Software used in class
Matlab / Simulink




<< back to Curriculum Plan