IPT Logotipo do IPT

Bachelor's Degree in Tecnologia Química

Chemical Analysis

<< back to Curriculum Plan

Publication in the Diário da República: Despacho n.º 15239/2016 - 19/12/2016

5 ECTS; 2º Ano, 2º Semestre, 30,0 T + 30,0 PL

- Maria Teresa da Luz Silveira

Not applicable.

Students should be able to identify the instrumental methods involving absorption, dispersion and emission of energy, as well as use them in quantitative analysis.
They should be able to apply IV and NMR spectroscopies and chromatography techniques.

1. Visible and ultraviolet spectrophotometry
Radiation Absorption
1.1.1-General Aspects
1.1.2-Law of Lambert and Beer
1.1.3-Chemical Deviations from Beer's Law
1.2-Nomenclature in spectrophotometry. Order of magnitude of concentrations and other quantities. Graphical presentation of data
1.3-Origin of spectrophotometric errors
1.4.1-Types of spectrophotometers.
1.4.2-Instrument components and their functions.
1.5-Instrumental deviations from the Beer’s Law.
1.6-Accuracy in spectrophotometric analysis: 1.6.1-Colorimetry; Spectrophotometry.
1.6.2-Increased accuracy by differential spectrophotometry
1.7-Applications of ultraviolet and visible spectrophotometry
1.7.1-Qualitative analysis. Identification of electronic spectra
1.7.2-Quantitative analysis:
-Conditions of the solution; selection of appropriate solvent and selection of appropriate wavelength or wavelengths
-Calculation Methods - Calibration Curve and Absolute Method
-Interference Elimination - Standard Addition Method
-Analysis of mixtures of absorbing substances
-Photometric titrations

2. Radiant energy dispersion (turbidimetry and nephelometry)
2.2-Rayleigh dispersion

3. Flame photometry.
3.1-Theoretical principles: Emission spectra; Dissociation mechanism; Intensity of atomic spectral stripes
3.2-Instrumental systems: components of an emission flame photometer and their functions.
3.3-Different types of emission flame photometry
3.3.1-Direct Flame Photometry
3.3.2-Indirect flame photometry by: difference; replacement, side effects-banding and radiation depression.
3.4-Types of interference: Spectral; Background emission; Self-absorption; Ionization; Chemical; Matrix
3.5-Flame photometry in Analytical Chemistry: precision, accuracy, detection limit and sensitivity in emission flame photometry.
3.6-Calculation Methods: Calibration Curve; Standard Addition; Internal Standard Method - Characteristics of an Internal Default Standard.

4. Atomic absorption spectroscopy.
4.1-Theoretical foundations: absorption mechanism; atomization; atomic population; Lambert-Beer Law;
4.2-Equipment: sources for atomic absorption; types of flames; atomization systems and burners.
4.3 Accuracy, precision, sensitivity and limit of detection in atomic absorption.
4.4 Interferences
4.5-Quantitative analysis: Methods of calculation-calibration curve; addition of standard and internal standard
4.6-Qualitative Analysis

5. Infrared Spectrometry
5.1-Theoretical principles
5.3-IR spectra: band nomenclature; printing region and typical absorption zones; spectrum identification

6. Nuclear magnetic resonance spectroscopy
6.1-Fundamental Principles
6.2-Instrumentation for NMR: continuous wave apparatus; Fourier pulse and transform technique apparatus.
6.3-NMR spectra and molecular structure.
6.3.1-Chemical Displacements
6.3.2-Spin-spin coupling.
6.4-Interpretation of NMR spectra
6.5-Quantitative Analysis

7. Chromatography
7.2-Chromatography analysis classification
7.3 Chromatographic methods and techniques
7.3.1-Liquid-liquid chromatography
7.3.2-Adsorption chromatography
7.3.3-Ion exchange chromatography
7.3.4-Gel Chromatography
7.3.5-Affinity Chromatography
7.3.6-Gas chromatography
7.3.7-Liquid column chromatography
7.3.8-High performance liquid chromatography
7.3.9-Hyphenated techniques: GC-MS; HPLC-MS

Laboratory work
-Spectrophotometric determination of pKa of green bromocresol indicator
-Turbidimetric determination of sulfate content in water
-Determination of sodium and potassium in water by Emission Flame Photometry

Evaluation Methodology
Continuous evaluation
Approval in the practical component (P) depends on the experimental execution of all practical works, delivery of a report of each work.

The practical assessment is valid only in the academic year in which it is performed.

The theoretical component (T) will be evaluated with a written test and a projet with a final value minimum of 9.5v.

Final evaluation
The final assessment consists of a written test on the theoretical subject (T) with a minimum of 9.5v.

The final classification of both the continuous evaluation and the final evaluation will be the weighted average of the two components: CF=0.2P + 0.8T

- Rouessac, A. e Rouessac, F. (2007). Chemical Analysis: Modern Instrumentation Methods and Techniques. New York: Wiley
- Grouch, S. e Holler, F. e Skoog, A. (2006). Principles of Instrumentation Analysis. New York: Brooks/Cole
- Gonçalves, M. (2001). Métodos Instrumentais para Análise de Soluções. Análise Quantitativa.. Lisboa: Fundação Caloute Gulbenkian

Teaching Method
Lectures exploring subject matter, theoretical-practical classes and laboratory sessions to apply the acquired skills.

Software used in class
Not applicable.




<< back to Curriculum Plan