IPT Logotipo do IPT

Ano Letivo: 2019/20

Engenharia Mecânica

Heat Transfer

<< back to Curriculum Plan

Publication in the Diário da República: Despacho nº 14312/2015 - 02/12/2015

5 ECTS; 2º Ano, 2º Semestre, 15,0 T + 15,0 PL + 30,0 TP + 3,50 OT , Cód. 912324.

Lecturer
- Flávio Rodrigues Fernandes Chaves (1)(2)

(1) Docente Responsável
(2) Docente que lecciona

Prerequisites
Not applicable.

Objectives
An initial approach to Heat Transfer is presented from the point of view of the Mechanical Engineer. The application examples address situations encountered by Mechanical Engineers in their daily work. Previous concepts are reviewed, and the contents of the course aim to provide a solid foundation for subsequent courses.

Program
1. Introduction.
1.1 Areas of application of heat transfer.
1.2 Heat transfer by conduction.
1.3 Convection.
1.4 Radiation.
1.5 Conservation of energy principle.
1.6 Simultaneous heat transfer mechanisms.

2. Heat conduction equation.
2.1 Introduction.
2.2 One-dimensional heat conduction equation.
2.3 General heat conduction equation.
2.4 Boundary and initial conditions.
2.5 Solution of heat conduction problems.
2.6 Heat sources.

3. Steady heat conduction.
3.1 Conduction of heat in plane walls.
3.2 Thermal resistance.
3.3 Conduction of heat in cylinders and spheres.
3.4 Critical radius of insulation.
3.5 Fins.

4. Transient heat conduction.
4.1 Introduction.
4.2 Biot Number.
4.3 Lumped system analysis.
4.5 Transient heat conduction in walls, cylinders and spheres.

5. Heat convection.
5.1 Nusselt number.
5.2 Classification of flows.
5.3 Velocity and temperature boundary layers.
5.4 Laminar and turbulent regime.
5.5 Finding the convection coefficient h.
5.6 Natural and forced convection.

6. Heat exchangers.
6.1 Introduction.
6.2 Types of heat exchangers.
6.3 Overall heat transfer coefficient.
6.4 Analysis of heat exchangers: LMTD method.
6.5 Analysis of heat exchangers: e-NTU method.
6.6 Comparison between LMTD and e-NTU methods.
6.7 Compact heat exchangers.

Evaluation Methodology
Written test and pratical work.
Final grade: 50% Written Test + 50% Pratical Work.
Minimum pass grade of 10/20.

Bibliography
- Figueiredo, R. (2015). Transmissão de Calor. Lisboa: Lidel
- Çengel, Y. e Ghajar, A. (2015). Heat and mass transfer: fundamentals & applications. EUA: McGraw-Hill

Teaching Method
Theoretical, practical and laboratory classes.

Software used in class
Not applicable.

 

 

 


<< back to Curriculum Plan
NP4552
Financiamento
KreativEu
erasmus
catedra
b-on
portugal2020
centro2020
compete2020
crusoe
fct
feder
fse
poch
portugal2030
poseur
prr
santander
republica
UE next generation
Centro 2030
Lisboa 2020
co-financiado